Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(1): 1403-1418, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38038914

RESUMO

Neurodegenerative disorders are a debilitating and persistent threat to the global elderly population, carrying grim outcomes. Their genesis is often multifactorial, with a history of prior exposure to xenobiotics such as pesticides, heavy metals, enviornmental pollutants, ionizing radiation etc,. A holistic molecular insight into their mechanistic induction upon single or combinatorial exposure to different toxicants is still unclear. In the present study, one-month-old C57BL/6 male mice were administered orally with malathion (50 mg/kg body wt. for 14 days) and single whole-body radiation (0.5 Gy) on the 8th day. Post-treatment, behavioural assays for exploratory behaviour, memory, and learning were performed. After sacrifice, brains were collected for histology, biochemical assays, and transcriptomic analysis. Transcriptomic analysis revealed several altered processes like synaptic transmission and plasticity, neuronal survival, proliferation, and death. Signalling pathways like MAPK, PI3K-Akt, Apelin, NF-κB, cAMP, Notch etc., and pathways related to neurodegenerative diseases were altered. Increased astrogliosis was observed in the radiation and coexposure groups, with significant neuronal cell death and a reduction in the expression of NeuN. Sholl analysis, dendritic arborization and spine density studies revealed decreased total apical neuronal path length and dendritic spine density. Reduced levels of the antioxidants GST and GSH and acetylcholinesterase enzyme activity were also detected. However, no changes were seen in exploratory behaviour or learning and memory post-treatment. Thus, explicating the molecular mechanisms behind malathion and radiation can provide novel insights into external factor-driven neurotoxicity and neurodegenerative pathogenesis.


Assuntos
Acetilcolinesterase , Malation , Idoso , Humanos , Animais , Masculino , Camundongos , Lactente , Malation/toxicidade , Fosfatidilinositol 3-Quinases , Camundongos Endogâmicos C57BL , Encéfalo
2.
Chem Biol Interact ; 386: 110775, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37866488

RESUMO

Radiation exposure can cause gut dysbiosis and there is a positive correlation between gut microbial imbalance and radiation-induced side effects in cancer patients. However, the influence of radiation on the gut-brain axis (GBA) and its neurological consequences are not well understood. Therefore, this study aimed to investigate the impact of pelvic irradiation on gut microbiota and the brain. Sprague Dawley rats were irradiated with a single dose of 6 Gy, and faecal samples were collected at different time points (7 and 12-days post-irradiation) for microbial analysis. Behavioural, histological, and gene expression analysis were performed to assess the effect of microbial dysbiosis on the brain. The findings indicated alterations in microbial diversity, disrupted intestinal morphology and integrity, neuronal death-related brain changes, neuroinflammation and reduced locomotor activity. Hippocampal gene expression analysis also showed a reduced expression of neural plasticity-related genes. Overall, this study demonstrated that pelvic irradiation affects gut microbiota, intestinal morphology, integrity, brain neuronal maturation, neural plasticity gene expression, and behaviour.


Assuntos
Disbiose , Microbioma Gastrointestinal , Humanos , Ratos , Animais , Ratos Sprague-Dawley , Encéfalo , Fezes
3.
Clin Transl Oncol ; 25(11): 3165-3173, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37071338

RESUMO

PURPOSE: Radiotherapy is a critical component of cancer treatment, along with surgery and chemotherapy. Approximately, 90% of cancer patients undergoing pelvic radiotherapy show gastrointestinal (GI) toxicity, including bloody diarrhea, and gastritis, most of which are associated with gut dysbiosis. In addition to the direct effect of radiation on the brain, pelvic irradiation can alter the gut microbiome, leading to inflammation and breakdown of the gut-blood barrier. This allows toxins and bacteria to enter the bloodstream and reach the brain. Probiotics have been proven to prevent GI toxicity by producing short-chain fatty acids and exopolysaccharides beneficial for protecting mucosal integrity and oxidative stress reduction in the intestine and also shown to be beneficial in brain health. Microbiota plays a significant role in maintaining gut and brain health, so it is important to study whether bacterial supplementation will help in maintaining the gut and brain structure after radiation exposure. METHODS: In the present study, male C57BL/6 mice were divided into control, radiation, probiotics, and probiotics + radiation groups. On the 7th day, animals in the radiation and probiotics + radiation groups received a single dose of 4 Gy to  whole-body. Posttreatment, mice were sacrificed, and the intestine and brain tissues were excised for histological analysis to assess GI and neuronal damage. RESULTS: Radiation-induced damage to the villi height and mucosal thickness was mitigated by the probiotic treatment significantly (p < 0.01). Further, radiation-induced pyknotic cell numbers in the DG, CA2, and CA3 areas were substantially reduced with bacterial supplementation (p < 0.001). Similarly, probiotics reduced neuronal inflammation induced by radiation in the cortex, CA2, and DG region (p < 0.01). Altogether, the probiotics treatment helps mitigate radiation-induced intestinal and neuronal damage. CONCLUSION: In conclusion, the probiotic formulation could attenuate the number of pyknotic cells in the hippocampal brain region and decrease neuroinflammation by reducing the number of microglial cells.


Assuntos
Probióticos , Humanos , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Probióticos/farmacologia , Probióticos/uso terapêutico , Trato Gastrointestinal/microbiologia , Encéfalo/metabolismo , Inflamação/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA